top of page

Research Interest

Sustainable, ESG and Biodiversity Finance

Vine Copula  Modeling and Risk Analysis

Statistics and Financial Econometrics

Large Language Models and Textual Analysis

Working Papers

Chasing ESG performance: \\How Methodologies Shape Outcomes

With Benuzzi, Matteo, Taufer, Emanuele and Paterlini, Sandra (2024)

Status: Under Review

Available at SSRN 4662257

ESG metrics, which are central to sustainable finance, face increasing scrutiny for their accuracy and representativeness. Concerns arise from retrospective score adjustments and data aggregation, risking misrepresentation of company performance. The European Parliament recently proposed a Regulation on ESG rating transparency, stressing the issue's urgency. In this context, we highlight that methodological choices can artificially inflate scores of top-ranked companies with new, lower-performing entrants, masking real progress through peer competition. Our 2012-2021 analysis in three key sectors shows that on average less than 45% of total pillar score variation is due to company disclosures. Replacing Refinitiv's percentile rankings with a simpler ‘‘performance ratio" methodology could mitigate these issues, offering more representative scores. Our performance ratio shows significant correlation with Refinitiv's approach but is less influenced by new entrants and peer comparisons, remaining robust to outliers.

A generalized precision matrix for non-Gaussian multivariate distributions with applications to portfolio optimization

With Taufer, Emanuele and Paterlini, Sandra (2023)

Status: Under Review

Available at SSRN 4063255

We introduce the concept of Generalized Precision Matrix (GPM), based on a general measure of dependence, which might be valid for any statistical distribution. Beside showing that in the Gaussian case, the GPM coincides with the inverse of the covariance matrix, we derive the GPM analytically for the multivariate t, multivariate skew-normal and multivariate skew-t distributions, moving beyond Gaussianity. Therefore, we argue that using the derived GPMs might be preferable when data show asymmetry and heavy tails, supporting our claim through simulation analysis. As financial times series are leptokurtic, we propose then an application to the Markowitz minimum variance portfolio, which exhibits superior fitting of the multivariate skew-t model during crisis periods.

banana-banana-xBBmny_WuWQ-unsplash_edited.jpg

Published Papers

Bax, K., Bonaccolto, G. & Paterlini, S. (2024). Spillovers in Europe: the Role of ESG. Journal of Financial Stability 72(2024, 101221).

DOI: 10.1016/j.jfs.2024.101221

Bax, K., Broccardo, E. & Paterlini, S. (2024). Environmental, social, and governance factor and financial returns: what is the relationship? Investigating environmental, social, and governance factor models. Current Opinion in Environmental Sustainability 66 (2024, 101398).

DOI: 10.1016/j.cosust.2023.101398

Benuzzi, M., Klaser, K. & Bax, K. (2023). Which ESG+F dimension matters most to private investors? An experimental study on financial decisions and the future generations. Journal of Behavioral and Experimental Finance 21(2024, 100882).

DOI: 10.1016/j.jbef.2023.100882

Bax, K., Müller, S. & Paterlini, S. (2023). Sustainability Transmission through Focal Nodes in Supply Chain Networks. Finance Research Letters 58(December 2023).

DOI: 10.1016/j.frl.2023.104476

Sommer, E., Bax, K. & Czado, C. (2023). Vine Copula based Portfolio Level Conditional Risk Measure Forecasting. Econometrics and Statistics.

DOI: 10.1016/j.ecosta.2023.08.002

Bax, K., Sahin, Ö., Czado, C. & Paterlini, S. (2023). ESG, Risk, and (Tail) Dependence. International Review of Financial Analysis. 87(May 2023).

DOI: 10.1016/j.irfa.2023.102513

Bax, K. (2023). Do diverse and inclusive workplaces benefit investors?  An Empirical Analysis on Europe and the United States. Finance Research Letters 53(March 2023).

DOI: 10.1016/j.frl.2022.103509

Bax, K., Bonaccolto, G., & Paterlini, S. (2022). Do Lower ESG Rated Companies Have Higher Systemic Impact? Empirical Evidence from Europe and the United States. Corporate Social Responsibility and Environmental Management 30(3), p. 1406-1420.

DOI: 10.1002/csr.2427

Czado, C., Bax, K., Sahin, Ö., Nagler, T., Min, A., & Paterlini, S. (2022). Vine copula based dependence modeling in sustainable finance. Journal of Finance and Data Science (JFDS) 8(November 2022).

DOI: 10.1016/j.jfds.2022.11.003

Sahin, Ö, Bax, K.,  Paterlini, S., & Czado, C. (2022). The pitfalls of (non-definitive) Environmental, Social, and Governance scoring methodology. Global Finance Journal 56(May 2023).

DOI: 10.1016/j.gfj.2022.100780

Sahin, Ö, Bax, K.,  Paterlini, S., & Czado, C. (2022). ESGM: ESG scores and the Missing pillar - Why does missing information matter?. Corporate Social Responsibility and Environmental Management 29(5), p. 1782-1798.

DOI: 10.1002/csr.2326

Bax, K. & Paterlini, S. (2022). Environmental Social Governance Information and Disclosure from a Company Perspective: a Structured Literature Review. International Journal of Business Performance Management, 23(3), p. 304–322. DOI: 10.1504/IJBPM.2022.123824

bottom of page